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General Relativity: Some relevant concepts
BSSN: Solving the Einstein Equations numerically

Analysis Methods
(black holes, global quantities, gravitational waves)

4. The Einstein Toolkit:
Open-source software for BSSN, GR Hydro, and friends




Some relevant concepts

GENERAL RELATIVITY




Einstein Equations

G, =8nT,

G,,: Einstein tensor, one measure of curvature

T..: stress-energy tensor, describes mass/energy/momentum/
ab
pressure/stress densities

G,, and T,, are symmetric: 10 independent components in 4D

Loose reading: (some part of) the space-time curvature equals
(“is generated by”) its matter content

Not discussing T,, today; will treat it as black box




Spacetime Curvature

Difference between special and general relativity: in GR,
spacetime is curved

2D example of a curved manifold: earth’s surface
Can’t use a straight coordinate system for a curved manifold!

E.g. Cartesian coordinate system doesn’t “fit” earth’s surface

In GR, one needs to use curvilinear, time-dependent
coordinate systems

In fact, if one knows how to use arbitrary coordinate systems
for a theory (e.g. hydrodynamics or electrodynamics), then
working with this theory in GR becomes trivial




Riemann, Ricci, Weyl

Curvature is measured by Riemann tensor R, 4; has 20
independent components in 4D describing curvature
completely

(unrelated to “Riemann problem” in hydrodynamics)

[blackboard sketch explaining how to measure curvature]

Can split Riemann tensor into two pieces: Ricci tensor R, and
Weyl tensor C, 4

Ricci tensor directly (locally) determined by matter content
(similar to div E and div B in electrodynamics); does not evolve

Weyl tensor evolves freely, determined by initial and boundary
conditions (describing gravitational interactions)




Metric

Metric g, is fundamental concept in GR

“Solving” a spacetime usually means calculating its metric

Everything can be calculated from the metric

Conceptually (within theory of GR) similar to gravitational
potential in Newtonian gravity, or potentials ®/A. in
electrodynamics

[blackboard sketch explaining meaning of metric]

Metric g, is symmetric, has 10 components in 4D

Metric defines lengths and angles




Covariant Derivatives

* Partial derivatives 0, are coordinate dependent

In other words, given e.g. a vector field ®?, the derivative 9, ®?
does not transform like a tensor under a coordinate
transformation

Note: This is unrelated to curvature — just a property when using
non-trivial coordinate systems

* Covariant derivatives D, are coordinate independent
(“covariant”)

D, ®2 =0, ®2+ 2, O
Christoffel symbol 2. contains first derivatives of the metric

* A physically meaningful theory must be covariant (coordinate
independent)




The Einstein Equations as
Wave-Type Equations

* Can express the Riemann tensor, Ricci tensor etc. in terms of
the metric:

R,, = -% 8% 0d.0,8,, + (many other terms involving first and
second derivatives of the metric)

* That is:

Einstein equations are 10 wave-type equations (coupled, non-
linear) for the metric components
* Itis (in principle) well known how to solve such equations

(compare Maxwell equations when written in terms of
potentials)

* However, the Einstein equations have many terms and are
thus technically complex




3+1 Decomposition

4-vectors and 4-tensors are very elegant...

...but our everyday understanding, our astrophysical
experience, and most numerical methods are based on space
and time being separate...

...we thus split 4D spacetime into 3D space and 1D time, so
that the Einstein equations look like a “conventional” theory.

Procedure:
Choose some time coordinate t for the spacetime

Hypersurfaces t=const define a 3D space each (must be
spacelike)

Split 4-vectors into scalar and 3-vector, 4-tensors into scalar, 3-
vector, and 3-tensor




Lapse and Shift

* The 4-metric g, is split into lapse a, shift B!, and 3-metric Vi
(with simple geometric meanings)

* Introduce extrinsic curvature K; of t=const hypersurfaces
(essentially time derivative of 3-metric)

 [blackboard sketch explaining lapse and shift]
* [blackboard sketch explaining extrinsic curvature]

8oo = -0° +v; B' P
8oi = Yj; B
8ij = Vi

0,v;=-2aK;+D;B+D,;B; [D;iscovariant derivative]




Gauge Freedom

Certain parts of the 3-metric y; and extrinsic curvature K; do
not influence curvature

They can be chosen freely, and only influence the choice of
coordinate system (e.g. div y; and trace K;)

Called gauge degrees of freedom

Similarly, lapse a and shift B! are not determined by Einstein
equations

They select how thegauge degree of freedoms evolve in time

Can be chosen freely as well
4 gauge degrees of freedom in total

Compare to choice of gauge freedom (div A) for vector
potential A in electrodynamics




Constraints

It turns out that some of the Einstein equations do not involve
time derivatives, i.e. they are not evolution equations

These have to be satisfied at all times

Compare to div E, div B in electrodynamics

Called Hamiltonian constraint (energy constraint) (scalar) and
momentum constraint (3-vector)

Can be cast as elliptic equations (i.e. boundary value problems)

4 constraints in total

Constraints need to be satisfied for initial condition

If so, they remain satisfied during time evolution
Unless there are numerical errors




ADM Formulation

* A common formulation that casts the 4D Einstein equations
into a 3+1 time evolution system

ADM: named after Arnowitt, Deser, Misner (1962)

Note: several versions of ADM, beware e.g. sign conventions for
Kij or Rij

* ADM system:
12 evolved variables: y;, K;
4 gauge variables: a, B
4 constraints H, M,




Literature

* Wald, General Relativity




Solving the Einstein Equations numerically

BSSN




Numerical Stability

* In principle, could now:
Write down evolution equations for y;, K; (ADM system)
Choose some simple gauge conditions a, B' (e.g. a=1, B'=0:
normal coordinates)
...and begin to evolve!
* However, it turns out that this is unstable for two (unrelated)
reasons:

ADM system amplifies small errors in constraints (which are
numerically always present)

Such simple gauge conditions lead to coordinate singularities
(coordinate lines cross after some time)

* Numerical relativity community struggled with this for a long
time: hard mathematical problem




BSSN System

* Through trial and error, good evolution systems were found
(family of BSSN formulations)

* Through mathematical analysis, another good class of
evolution systems was found (harmonic formulations)

* It turns out that stability crucially depends on the gauge

conditions, hence lapse and shift cannot really be chosen
freely either

* Literature: Well-posedness of the BSSN system proven (and
BSSN equations/gauge conditions listed in detail) in Brown et
al., Phys. Rev. D 79, 044023 (2009)




BSSN Variables

* ADM variables: y;, K;, a, B' (12 evolved variables)

ij

* BSSN uses a different set of variables (~25 evolved variables):
¢ =1/, log det y;
Vi=ety;
K=yIK;
AT = ed (K - 75 v; K)
rNI = - aJ VNIJ
a, B' remain
A, B' are essentially time derivatives of a and f'

* Note: there are several slightly different BSSN variants; all work fine,
but they have slightly different behaviour near black holes




BSSN Gauge Conditions

Time evolution equations of the BSSN variables are readily
determined from their definitions and the ADM evolution
equations

BSSN lapse condition: 1+log slicing

Similar to a harmonic time coordinate

Also called K driver: drives K (trace of K;) or 9, Kto zero
BSSN shift condition: I driver

Somewhat similar to harmonic spatial coordinates
Drives " or 0, to zero

These gauge conditions can drive the coordinate system to
being Cartesian (Minkowski) when spacetime is flat




BSSN Constraints

* Since the BSSN system has more variables, it also introduces
new constraints (in addition to Hamiltonian and momentum
constraint):

dety”;=1
trace A" =0
M=-9,y" [definition of "]

* As with the Hamiltonian and momentum constraint, they
need to be satisfied initially, and will then be preserved during
evolution

BSSN contains divergence cleaning terms

* Numerically, trace A”; = 0 needs to be enforced explicitly; the other
constraints are well behaved on their own




Initial Data Setup

Metric and extrinsic curvature need to satisfy constraints
Thus need to solve constraints before evolution — highly non-
trivial step!

Typically, initial data are prepared in terms of ADM variables,
then converted to BSSN, then evolved

ADM variables are “common language” in numerical relativity
(used for initial data, analysis, interaction with GR hydro, etc.)

York-Lichnerowicz procedure for constraint solving:

Introduce certain new variables that render constraints elliptic
equations

Constraints can then be solved with standard methods
Most generic way to solve constraints — many other ways exist

See e.g. Cook, LRR 2000 5




Singularity Treatment

* Black hole spacetimes contain singularities
Loosely speaking, things become infinite at a singularity

Mathematically, a singularity is a boundary of the domain, and
certain field values may diverge near that boundary

Physically, a singularity indicates that a theory is invalid/
inconsistent in this regime

E.g. general relativity has not been tested for very high curvature,
and one expects that quantum gravity will be necessary to describe
this consistently

Practically, we have to live with singularities in our spacetimes
* Cosmic censorship conjecture states that all singularities will

be hidden behind an event horizon, i.e. will not affect
anything that can be observed from far away




Singularity Treatment

* Method 1: Excision

Nothing escapes an event horizon, i.e. event horizon is outflow
boundary

Cut out a part of the simulation domain inside the event horizon

Problem: Black holes move, handling irregularly shaped
boundaries is complex

* Method 2: Punctures

Separate solution into divergent and non-divergent parts
E.g. conformal factor

Handle divergent part analytically

Problem: Black holes move, handling a divergent function
analytically imposes inconvenient conditions onto simulation




Singularity Treatment

* Method 3: Numerical dissipation / “moving punctures” /
“Turduckening”
Nothing escapes an event horizon, i.e. can violate Einstein
equations inside
Can e.g. smooth out solution inside (for initial data), or can
prevent singularity from forming via dissipation (during time
evolution)
Works beautifully in practice, proven to be physically correct
(since inside EH), was key contribution to successful binary black
hole simulations
Doesn’t seem to work with harmonic formulation




BSSN Summary

BSSN is a family of evolution systems for the Einstein
equations
Includes gauge conditions

Good gauge conditions known

Can use all initial data (if e.g. available in ADM variables)
Can also easily calculate ADM variables, if needed by others

BSSN has simple way of handling singularities

Good gauge conditions and singularity handling are probably
the largest advantages of BSSN







Black holes, global quantities, gravitational waves

ANALYSIS METHODS




Event Horizons

* Itis very difficult to find out where there are black holes in the
simulation domain!

All one has in the metric (and extrinsic curvature)
* Event horizons are a teleological concept and hence often not
useful

The event horizon is the boundary of the region that can be
observed from far away (future null infinity)

The location of an event horizon depends only on the future
development of the spacetime, not on the past

There is no mathematical procedure (nor any kind of
measurement) that one could perform to locate an event horizon

There could be an event horizon passing through this room right now




Event Horizons

* The location of an event horizon is known iff one knows the
future of the spacetime:

In stationary systems
After a numerical time evolution is complete
* Cannot be used to define initial data, cannot be used during
time evolution
Often, time evolution ends in stationary state

* Procedure for finding event horizons:

Event horizon is null surface, made of light rays “moving radially
outwards”

Start in the future, then trace these light rays backwards in time




£ e
v g

.-.:,.
AT
A
SRR
R

3 1
o
S

-

i

Eii
S
e

-

TR
g
R
;3

== T

e
raay
v
Haraa,,

T

., 083

/M o
190
180 --
—
S, o .“"‘N..__-‘-
170< $l. -1 I
o 02 04 06 08 40 {12 4 16 1B
r/M

Figure 2: This figure shows part of a simulation of the spherically symmetric collapse of a model

stellar core (a T = % polytrope) to a black hole.

The event horizon (shown by the dashed line) was

computed using the “integrate null geodesics forwards” algorithm described in Section 5.1; solid
lines show outgoing null geodesics. The apparent horizon (the boundary of the trapped region, shown
shaded) was computed using the zero-finding algorithm discussed in Section 8.1. The dotted lines
show the world lines of Lagrangian matter tracers and are labeled by the fraction of baryons interior
to them. Figure reprinted with permission from [1/2]. © 1980 by the American Astronomical

Society.

Thornburg,
LRR 2007 3




Apparent Horizons

* There are many definitions for various kinds of “horizons” in
GR

* Most useful probably apparent horizon (AH), or marginally
trapped surface (MTS)
Choose a closed 2-surface (distorted sphere)
Send light rays outwards
Observe how this sphere of light rays grows
If its area stays constant (doesn’t grow), it is an MTS

Technicality: If there are several MTS, then the outermost is
called AH, but terminology is loose

* [blackboard sketch describing MTS]




Apparent Horizons

* Event horizons are a property of the spacetime; they are a
global, powerful concept

EH is 3D null surface
EH begins at point/line, always grows, never ends
* Apparent horizons depend on a choice of foliation (time
coordinate), and are thus coordinate dependent

AH are 2D surfaces, each defined independently at its own time t,
forming a 3D world tube

AH world tube can begin/end anytime
AH cannot be arbitrarily small
We observe that AH world tubes form and annihilate in pairs

* Numerically, finding an AH means solving an elliptic equation,
and requires a good initial guess (horizon tracking)




Horizon Mass and Angular
Momentum

* Can calculate mass and spin of AH, observe how black hole
grows

(Irreducible) Mass: essentially given by area of AH
Will not decrease
Angular momentum: more involved, need to find/define

approximate Killing vector field (approximate axial symmetry) on
horizon

Several slightly differing definitions

Angular momentum can increase or decrease

Will only be conserved if horizon is axially symmetric
Total mass: depends on both irreducible mass and angular
momentum

Can decrease if angular momentum decreases




ADM Quantities

* Can define total mass and angular momentum

Cannot just integrate over space: singularities, equivalence
principle!

Instead, examine metric far away (near infinity)

Far away, spacetime will be flat

Look closer, will see a perturbation depending on total mass

* Look closer, will see a perturbation depending on total angular
momentum

* Difficult to calculate numerically, since need to evaluate (a) far
away from source, and (b) have high accuracy

* Mostly used for initial conditions




Gravitational Waves

» “Gravitational wave” concept not well defined in strong field
regime
Need to have a background (possibly flat) and a perturbation to
define waves

* Gravitational waves are transverse and have two modes: ht
and h*

* Numerically, two possible definitions:

Perturbative
Curvature based
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Figure 1: In Einstein’s theory, gravitational waves have two independent polarizations. The effect on
proper separations of particles in a circular ring in the (z,y)-plane due to a plus-polarized wave traveling
in the z-direction is shown in (a) and due to a cross-polarized wave is shown in (b). The ring continuously
gets deformed into one of the ellipses and back during the first half of a gravitational wave period and gets
deformed into the other ellipse and back during the next half.

Sathyaprakash & Schutz, LRR 2009 2




Gravitational Waves:
Perturbative Calculation

* At large distances from a compact object, spacetime will be
“simple”
will look like a black hole with linear perturbations: gravitational
waves

* Procedure: Examine metric far away, decompose into
“background” and “perturbation”, read off wave content

directly
Need to know mass, angular momentum of background
Need high accuracy




Gravitational Waves:
Curvature Based Calculation

* Near infinity, most curvature components will decay away
Those decaying most slowly are gravitational waves
Fall off with 1/r, i.e. can carry away energy

* Procedure: Examine Weyl tensor far away

Decompose it into 5 complex Weyl scalars W with different fall-
off properties
W, falls off with 1/r

Need to integrate to obtain wave content

* Mathematically elegant

People say Weyl scalars are coordinate independent, but that is
not really true: Weyl scalars depends on choice of tetrad, which
people choose depending on coordinates




Open-source software for BSSN, GR Hydro, and friends

THE EINSTEIN TOOLKIT




